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Overview

Timeline

Start: August 1, 2013
End: July 31, 2017
Percent complete: 80%

Budget

Total project funding
$1,350k

Funding received in FY 2016
$450k

Funding for FY 2017

$450k

Barriers

Barriers of batteries

- High cost (A)

- Low energy density (C)
- Short battery life (E)

Targets: cost-effective and
high-energy electrode
materials and batteries
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SLAC: In-situ X-ray
Amprius Inc.
Professor Steven Chu, Zhenan Bao



Project Objective and Relevance

Objective

- Develop lithium metal anodes with high capacity and reliability for the
next-generation high-energy-density rechargeable lithium-based batteries
to power electric vehicles (HEV/PEV/EV).

-Design and fabricate novel chemically and mechanically stable
interfacial layers between lithium metal and electrolytes to overcome the
intrinsic material challenges that lead to short battery life, including
lithium metal dendrite formation and severe side chemical reactions
during electrochemical cycling.

-Understand the effects of interfacial protection materials and additives
on the performance and life time of lithium metal batteries.

- Develop scalable low-cost methods for the synthesis of nanostructured
lithium metal anodes and interfacial protection materials.

-Project contents are directly aimed at the listed barriers: high cost, low
energy density and short battery life.



Milestones for FY16 and 17

Month/
year

3/2015 Fabrication of interfacial protection materials, including interconnected Complete
carbon hollow spheres, layered h-BN and graphene with different
thicknesses and defect levels.

6/2015 Determine the effect of LINO; and lithium polysulfide on the cycling Complete
Coulombic efficiency of lithium metal anode.

9/2015 Demonstrate the guiding effect of polymer nanofibers for improved Complete
lithium metal cycling performance.

12/2015 Demonstrate the improved cycling performance of surface-engineered Complete
lithium metal anode under different current density and areal capacity.

3/2016 Achieve minimum relative volume change and effective dendrite Complete
suppression during electrochemical cycling via nanoporous host-lithium
composite electrode design.

9/2016 Study the effects of substrate lithium affinity on the nucleation/growth Complete
behavior and Coulombic efficiency of lithium metal.

12/2016 Demonstrate low-cost, scalable fabrication of porous host-lithium Complete
composite electrodes.

3/2017 Demonstrate successful sealing of pinholes in h-BN thin film pinholes. = Complete



Approach/Strategy

Advanced design and synthesis of interfacial protecting layers and
nanostructured lithium metal electrodes

1)Engineer various interfacial protection materials with excellent chemical and mechanical
stability (interconnected carbon hollow spheres, layered h-BN, graphene, etc.) to suppress
lithium dendrite formation during electrochemical cycling and to improve Coulombic
efficiency.

2)Develop/discover stable, light-weight host materials with high lithium affinity for the
fabrication of nanoporous lithium-host composite electrodes with minimum relative volume
change during cycling and improved electrochemical performance.

3)Develop effective surface coating/modification techniques to achieve high lithium affinity
on host materials.

4)Control the lithium deposition behavior through nanoparticle seeded growth and
nanomaterials encapsulation

Structure and property characterization
1)Ex-situ transmission electron microscopy & scanning electron microscopy
2)In-situ transmission electron microscopy

)
)
)
)
)
)

3)In-situ optical microscopy Electrochemical testing
4)X-ray diffraction 1) Coin cells and pouch cells
5)X-ray photoelectron spectroscopy 2) A set of electrochemical techniques

6)Fourier transform infrared spectroscopy



Possible Practical Specific Energy Based on Li-Chemistry

L1 meal/sulfur
>600 Wh/kg

L1 metal/ NMC
500Wh/kg

Si/NMC
400 Wh/kg

Graphite/NMC
300 Wh/kg



Challenges of Lithium Metal Anodes

Li dendrites
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Challenges of Lithium Metal Anodes

Fundamental Root Cause of Li Metal Problems:
1) No Host
2) High chemical reactivity
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Reviving the lithium metal anode for
high-energy batteries

Dingchang Lin', Yayuan Liu' and Yi Cui***

Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries
to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries
beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is
one of the most favoured choices for next-generation Li batteries, especially Li-S and Li-air systems. After falling into oblivion
for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative
tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then
highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the oppor-
tunities and possible directions for future development of Li anodes in applications.

D. Lin, Y. Liu, Y. Cui Nature Nanotechnology 12, 194 (2017).



Accomplishments: Li metal nucleation

Li metal heterogeneous nucleation
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Accomplishments: Li metal nucleation
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Accomplishments: Li metal nucleation
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Accomplishments: substrate dependent nucleation

Selective lithium deposition with nano-sized seeds
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Cui group, Nature Energy, 1, 16010 (2016) (Collaborated with Prof. Steven Chu)
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Accomplishments: substrate dependent nucleation

Li metal nucleation on Cu and Au

b
400 -|
400 Li
. Li . (Li)
— S Li Au
::Es- Cu E
— = 200
4 200 %
5 @
1.|'J. =
= 1]
2 : &
o 40 mV overpotential 0
ﬂ # Y | : :
R Cu, 10uA = Au 10uA
0.00 0.05 0.10 0.00 0.05 010

] 2
Capacity (mAh/cm?) Capacity (mAh/cm?)

1 M LiPF, in EC:DEC

KYan, S. Chu, Y. Cui Nature Energy 1, 16010 (
2016)



Temperature ("C)
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Phase Diagrams of Li-Cu and Li-Au
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Accomplishments: Seeded Hollow Carbon Host

Nanocapsule as a “Host” for Lithium Metal
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Accomplishments

Layered reduced graphene oxide as a stable host for lithium metal

Layered Li-rGO
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Accomplishments
Layered reduced graphene oxide as a stable host for lithium metal

Make Materials Surface “Lithiophilic”

CNT film C fiber meso-C on Cu C nanofiber rGO film

Dingchang Lin, Yayuan Liu, Yi Cui, Nature Nanotechnology , 11, 626 (2016)



Accomplishments
Layered reduced graphene oxide as a stable host for lithium metal

O
-
3)
.
S
—
)

Graphene oxide



Accomplishments
Layered reduced graphene oxide as a stable host for lithium metal

Molten Lithium Infusion Into r-GO:
r-GO only 8% by weight

a GO Film Sparked-rGO Film Layered Li-rGO
Composite Film
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Dingchang Lin, Yayuan Liu, Yi Cui, Nature Nanotechnology , 11, 626 (2016)
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Accomplishments
Layered reduced graphene oxide as a stable host for lithium metal

Cu foil 10 cycles
1 mA cm™

Li-rGO 10 cycles
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Dingchang Lin, Yayan Liu «' Nature anotechnology, 11, 626 (2016)



Accomplishments
Layered reduced graphene oxide as a stable host for lithium metal

Little volume change during cycling: only 20%
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Dingchang Lin, Yayuan Liu, Yi Cui, Nature Nanotechnology , 11, 626 (2016)
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Accomplishments
Layered reduced graphene oxide as a stable host for lithium metal

Symmetric-cell cycling in carbonate electrolyte
Sample
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Accomplishment

Universal silicon/ZnO coating for lithiophilic surface
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Accomplishment

Interfacial engineering with Cu;N-SBR composite layer-synthesis
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ol er matrix
- = “CuN i

nanopartlcles THF solution coating

+>

Li foil/porous Li

i"io ’ l'ﬂﬂll"l

® O {;&

Cu(OMe), + Benzylamine  gBR binder

-{-CH:—CH-}—'-CHz CHz-i—I-—CHz—-CH-I—

CH=CH I

Li-ion conducting artificial SEI

@cuN+Li — 0 Li,N + Cu

Y. Liu, Y. Cui, Adv. Mater., 29, 1605531, (2017) ‘ 27



Accomplishment

Interfacial engineering with Cu;N-SBR composite layer
-Li deposition morphology and mechanical properties
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Accomplishment

Interfacial engineering with Cu;N-SBR composite layer
-Cycling stability
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Accomplishment

Interfacial engineering with self-healing polymer

SEl breakdown Li dendrites

SEl layer Lithium Copper

Adaptive polyrner coating Adaptive deformat:on of polymer coating
Adaptive Polymer Monomer Structure
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G. Zheng, Z. Bao and Y. Cui, ACS Energy Lett., 1 (6), 1247 (2016) 30



Accomplishment

Interfacial engineering with self-healing polymer
-Mechanical properties
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Accomplishment

Interfacial engineering with self-healing polymer
-Li deposition morphologies and cycling stability
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Responses to Previous Year Reviewers’
Comments

Not Applicable
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Collaboration and Coordination
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Remaining Challenges and Barriers

3D lithium metal anodes with stable interface needs to be further
developed.

Ulrahigh Coulombic efficiency needs to be achieved to minimize
lithium loss during extended cycles (>99.5% for >500 cycles).

It remains challenging to maintain even Li deposition and good
cycling stability of lithium metal at ultrahigh current (>10 mA cm-2).

Integrate the stable Li metal anodes with cathode materials (NMC,

sulfur, etc.) to study the compatibility and achieve high energy
density

35



Proposed Future Work

FY 2017
-Further explore the host materials and their surface chemistry

-To integrate stable interface coating into the stable host for lithium
metal.

FY 2018

-To further improve the Coulombic efficiency of lithium metal
cycling and achieve practical applications (>99.5%).

-To achieve more stable cycling of lithium metal at high current
density (15-20 mA cm-2).

-Pair the stable lithium metal anode with cathode materials (NMC,
sulfur, etc.) to make full cells.

Any proposed future work is subject to change based on funding levels. 36



Summary

Objective and Relevance: The goal of this project is to develop stable
and high capacity lithium anodes from the perspective of hanomaterials
design to enable the next-generation lithium metal-based batteries to
power electric vehicles, which is highly relevant to the VT Program goal.

Approach/Strategy: This project combines advanced nanomaterials
synthesis, characterization, battery assembly and testing, which has been
demonstrated to be highly effective.

Technical Accomplishments and Progress: This project has produced
many significant results, meeting milestones. They include identifying the
key challenges in lithium metal anodes, using rational materials design,
synthesizing and testing, and developing scalable and low-cost methods.
The results have been published in top peer-reviewed scientific journals.
The Pl has received numerous invitations to speak in national and
international conferences.

Collaborations and Coordination: The Pl has established a number of
highly effective collaborations.

Proposed Future Work: Rational and exciting future has been planned.
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